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INTERNAL STRESSES IN A SOLID WITH DISLOCATIONS

UDC 539.3S. P. Kiselev

Formulas for calculating internal stresses in a material, generated by continuously distributed dislo-
cations, are found on the basis of the gauge theory of defects. It is shown that internal stresses are
self-balanced and satisfy the equilibrium equations and boundary conditions in the absence of external
loads.
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Internal stresses generated by defects reach significant magnitudes and can appreciably affect physicome-
chanical properties of materials. For this reason, calculation of internal stresses is an urgent problem, which is
extensively investigated. One of the first methods of calculating stresses induced by a point defect, which was
proposed by Eshelby, consists in adding a bulk force proportional to the derivative from the plastic strain tensor to
the right side of the equilibrium equations [1]. Later, this method was generalized to calculate stresses from a single
dislocation and a set of continuously distributed dislocations [1]. This method is incomplete, however, because it
ignores the vortex component of the stress tensor, which identically satisfies the equilibrium equations. The vortex
component of the stress tensor was discussed in [2–4] in the general case and as applied to a continuous field of
defects in [5, 6].

Internal stresses generated by continuously distributed dislocations are considered in the present work on
the basis of the gauge theory of defects.

Following [7], we write the equilibrium equations of a solid body with a continuously distributed field of
dislocations:
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Here ui are the components of the displacement vector, σij , εij , βij , αij , Sij , and eij are the tensors of stresses,
strains, plastic distortion, dislocation density, stress deviator, and strain deviator, respectively, εijk is the absolutely
antisymmetric Levi-Civita tensor, δij is the Kronecker symbol, p is the pressure, and K and µ are the bulk com-
pression and shear moduli; the subscripts “e” and “p” refer to elastic and plastic strains, respectively; summation
is performed over repeated subscripts. The boundary conditions for system (1) have the following form (see [7]):

fi = σijnj , εkjlnjαli = 0. (2)
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It follows from the third inequality of system (1) that the steady solutions of this system exist under the
condition that the stress deviator S̃ij does not go out to the yield surface. In this case, the stresses S̃ij are balanced
by the stresses of “dry” friction Sr

ij [see the second equation in (1)]. The stresses of “dry” friction Sr
ij are similar to

the averaged absolute value of the Peierls force [8]; they have inelastic origin and are related to the atomic structure
of the crystal.

It is of interest to note that, in addition to the “conventional” stresses σij determined from Hooke’s law,
the stresses S̃ij involve the stresses σ′ij , though the latter do not enter the equilibrium equations [first equation in
(1)] and boundary conditions (2). This allows us to assume that the stresses σ′ij identically satisfy the equilibrium
equation and zero boundary conditions (2), where the surface force at each point of the boundary equals zero fi = 0.
Since the stresses σ′ij are expressed via the rotor of the dislocation-density tensor, they will be referred to as vortex
and self-balanced stresses below. On the basis of the assumption made, the total stresses in an elastic material with
dislocations are described by the expression σ̃ij = σij +σ′ij , where the stresses σij are determined similar to [1] from
the equilibrium equations and Hooke’s law, and the vortex self-balanced stresses σ′ij are found by the formula
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∂αli
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= −Cεjklεlsp

∂2βpi
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. (3)

It follows from formula (3) that the tensor σ′ij is not symmetric. The sequence of subscripts in the asymmetric
tensors σ′ij and αij in formula (3) is uniquely determined from the condition of invariance of system (1) with respect
to the group of gauge transformations

u′i = ui + hi(xk), β′ji = βji +
∂hi(xk)
∂xj

,

where hi(xk) is an arbitrary function of coordinates. The subscript i related to the function hi(xk) is called the
group subscript, and j is called the space subscript.

Let us prove the above-made assumptions concerning the stress σ′ij .
The validity of the first assumption is verified by a direct substitution of expression (3) into the equilibrium

equation [first equation in system (1)]:
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The third term in this chain of equalities is obtained from the second one by replacing the repeated subscripts k ↔ j,
and the fourth term is obtained by permutation of the subscripts k and j in the antisymmetric tensor εkjl. As a
result, we find that the fourth term equals the second term with the opposite sign and, hence, equals zero. Thus,
it is shown that the equilibrium equation is identically satisfied if we substitute stresses determined by formula (3)
into this equation.

To verify the second assumption, we first consider a particular case where the body has the form of a cube.
We introduce a Cartesian coordinate system x1, x2, x3 and place the origin to the center of the cube; then, the
equations for the cube faces are xi = ±1. Using Eqs. (1) and (2), we find the value of the surface force fi = σ′ijnj

on the face x1 = 1, for which n1 = 1 and n2 = n3 = 0. Substituting these ni into the second equation in (2),
we obtain that α3i = α2i = 0 is valid on the face x1 = 1, and α1i is an arbitrary function of the coordinates xi.
Differentiating the first two relations with respect to x2, x3, we rewrite the boundary conditions for αij on the face
x1 = 1 in the form
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Substituting (4) into the first equation in (2), with allowance for (3), we obtain the following relation for the face
x1 = 1:

fi = σ′ijnj = σ′i1 = −C
(∂α3i

∂x2
− ∂α2i

∂x3

)
= 0.

Similar identities are valid for the other faces of the cube; hence, the vortex stresses σ′ij identically satisfy the zero
boundary conditions and are self-balanced.
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Let us give a similar proof in the general case for a body bounded by an arbitrary surface. We relate the
local Cartesian coordinate system to each point of the surface so that the axis ξ1 at each point is directed along
the unit normal vector to the surface n. This can be done by parallel transposition and rotation of the Cartesian
reference vector ei when passing from the point ξi to the point ξi + dξi. In this case, the vortex stresses (3) are
determined by the formula

σ̂′ = σ′ji eje
i, σ′ji = −Cεjkl∇kαli = − C
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)
, (5)

where Γk
ij are the Christoffel symbols expressed via the derivatives from the metric tensor gij [9], g = det ‖gij‖. In the

coordinates ξi, the boundary condition for αij [see the second equation in (2)] is written in the form εkjlnjαli = 0.
At each point of the surface ξ1 = 0, the normal vector has the components n1 = 1 and n2 = n3 = 0; substituting
them into the boundary conditions, we obtain α3i(ξ2, ξ3) = α2i(ξ2, ξ3) = 0, α1i(ξi) is an arbitrary function of
coordinates. From here, we find the covariant derivatives at the boundary:

∇2α3i =
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∂ξ2
− α3sΓs

i2 − αsiΓs
32 = −α1iΓ1

32, ∇3α2i = −α1iΓ1
23.

Substituting these derivatives into (5) and taking into account that the Christoffel symbols in the Euclidean space
are symmetric with respect to the subscripts Γk

ij = Γk
ji [9], we obtain

fi = σ′ji nj = σ′1i = −C(∇2α3i −∇3α2i) = Cα1i(Γ1
23 − Γ1

32) = 0.

This identity finalizes the proof of the fact that the stresses σ′ij are self-balanced. It follows from formulas (3), (5)
that these stresses depend on nine arbitrary functions αij or βij , which should satisfy the second boundary condition
in (2). The functions αij(xk) are parameters of state, and their form is determined by solving an unsteady problem
that describes the process of reaching this steady state or from an experiment. The functions βij(xk) are not
parameters of state because they are changed by gauge transformations. Note, the functions αij and σ′ij remain
unchanged after gauge transformations.

A geometric approach to the description of an elastic body with defects, which is based on the use of non-
Euclidean geometry for the distortion field, was developed in [5, 6]. Myasnikov and Guzev [5, 6] proposed a formula
for vortex stresses

σ′′ij = Aεjlkεisp
∂Γpl.s

∂xk
, (6)

which identically satisfies the equilibrium equation. We find the surface force generated by stresses (6) on the cube
face x1 = 1 for low strains βij � 1. In this case, Γij.k = ∂βjk/∂xi and σ′′ij = Aεilk ∂αjk/∂xl, which, with allowance
for Eq. (4), yields fi = σ′′i1 = Aεilk ∂α1k/∂xl. Since α1i is an arbitrary function of coordinates xi, we have fi 6= 0
in the general case, and stresses (6) σ′′ij do not satisfy the zero boundary conditions. To satisfy the boundary
conditions, Myasnikov and Guzev [5, 6] introduced elastic stresses generated by the forces on the body surface due
to the vortex stresses f ′′i = −σ′′ijnj .

We compare the formula for the self-balanced stresses (3) and formula (6) from [5, 6]. For this purpose,
first, we extend formula (3) to finite strains. In the case of Cartesian coordinates, the dislocation-density tensor
αij is expressed through the distortion-field torsion tensor Tij.k by the formula [6] αlk = εlijTij.k, where Tij.k

= (Γij.k − Γji.k)/2. Substituting these relations into Eq. (3), we obtain

σ′ij = Cεjlkεlsp
∂Γsp.i

∂xk
. (7)

Formulas (6) and (7) differ by the position of the subscripts i, j. Both subscripts are space subscripts in Eq. (6),
whereas j is a space subscript and i is a group subscript in Eq. (7).

The formula for vortex stresses can also be determined from the condition that the equilibrium equations
remain unchanged if stresses of the form σ′ij = εjkl ∂Fil/∂xk are added. The generating function Fil can be
represented in the form of a rotor of another function. The generating function F ′

il = εlspΓsp.i = εlsp ∂βpi/∂xs

corresponds to formula (7), and the generating function F ′′
il = εispΓpl.s = εips ∂βlp/∂xs corresponds to formula (6).

Representing the distortion tensor βij as a sum of the symmetric εij and antisymmetric ωij tensors βij = εij +ωij ,
we compare these generating functions F ′

li = ϕil − ψil and F ′′
il = −(ϕil + ψil), where ϕil = εisp ∂εlp/∂xs and
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ψil = εisp ∂ωlp/∂xs. If ϕil(xk) 6= 0 and ψil(xk) 6= 0, the generating functions F ′
il and F ′′

il are different; if one of the
functions ϕil(xk) or ψil(xk) is identically equal to zero, F ′

il is expressed via F ′′
il . It follows from the comparison that

the function F ′
il should be chosen between the two functions F ′

il and F ′′
il as a generating function, because F ′

il, in
contrast to F ′′

il , satisfies the zero boundary conditions (2).
We consider the inverse problem of determining the dislocation density αij from a given field of self-balanced

stresses σ′ij . First, we examine a particular case for the stresses σ′ij from [3] and then generalize the result to
arbitrary self-balanced stresses σ′ij . Godunov [3] constructed a particular example of self-balanced stresses in a
cube (−1 6 xi 6 1, i = 1, 2, 3) in the form

σ′11 = cosπx1 cosπx2 + cosπx2, σ′22 = cosπx1 cosπx2 + cosπx1,

σ′12 = σ′21 = sinπx1 sinπx2.
(8)

Assuming that C = 1 and αij = αij(x1, x2) in Eq. (3), we obtain the system

∂α31

∂x2
= −σ′11,

∂α31

∂x1
= σ′12,

∂α32

∂x1
= σ′22,

∂α32

∂x2
= −σ′21. (9)

Using the equalities ∂2α31/∂x1 ∂x2 = ∂2α31/∂x2 ∂x1 and ∂2α32/∂x1 ∂x2 = ∂2α32/∂x2 ∂x1 and Eqs. (9), we find
the conditions of integrability of Eq. (9), which are the following equilibrium equations:

∂σ′11
∂x1

+
∂σ′12
∂x2

= 0,
∂σ′21
∂x1

+
∂σ′22
∂x2

= 0. (10)

It follows from here that the dislocation density is uniquely determined by the field of self-balanced stresses, since the
latter identically satisfy the equilibrium equations. Substituting relations (8) into Eqs. (9), we find the dislocation
density

α31 = −(1/π) sinπx2(cosπx1 + 1), α32 = (1/π) sinπx1(cosπx2 + 1). (11)

Equations (11) describe the distribution of rectilinear dislocations parallel to the axis x3. The dislocation density
vanishes on the side faces of the cube x1 = ±1 and x2 = ±1. The dislocation lines are perpendicular to the upper
and lower faces of the cube x3 = ±1, and the dislocation density on these faces is determined by formulas (11).
Integrating Eqs. (11), we find that the total Burgers vector on these faces equals zero:

B1 =

1∫
−1

dx2

1∫
−1

α31 dx1 = 0, B2 =

1∫
−1

dx2

1∫
−1

α32 dx1 = 0.

Let us extend Eq. (11) to the description of a periodic distribution of dislocation density with a zero total
Burgers vector B1 = B2 = 0:

α31 = −A sinmπx2(cosnπx1 + 1), α32 = A sinnπx1(cosmπx2 + 1),

n = 2k + 1, m = 2l + 1.
(12)

Substituting (12) into Eqs. (9), we find the self-balanced stresses

σ′11 = Amπ cosmπx2(cosnπx1 + 1), σ′22 = Anπ cosnπx1(cosmπx2 + 1),

σ′12 = Anπ sinmπx2 sinnπx1, σ′21 = Amπ sinmπx2 sinnπx1, (13)

n = 2k + 1, m = 2l + 1.

By means of direct verification, we can easily see that stresses (13) identically satisfy the equilibrium equations (10)
and the boundary conditions f1 = σ′11 = 0 and f2 = σ′21 = 0 for x1 = ±1 and f2 = σ′22 = 0 and f1 = σ′12 = 0 for
x2 = ±1.

To determine αij from given σ′ij in the general case, one has to solve a system of three equations in partial
derivatives (3): Cεlkj ∂αli/∂xk = σ′ij . Differentiating the left and right sides of this equation with respect to xj , we
obtain

Cεlkj
∂2αli

∂xj∂xk
=

1
2
Cεlkj

( ∂2αli

∂xj ∂xk
− ∂2αli

∂xk ∂xj

)
=
∂σ′ij
∂xj

.
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Using the identity ∂2αli/∂xj ∂xk = ∂2αli/∂xk∂xj , we show that, to determine αij , the stresses σ′ij should satisfy the
equilibrium equation ∂σ′ij/∂xj = 0. Since the self-balanced stresses σ′ij identically satisfy the equilibrium equation,
the dislocation density αij is uniquely determined by integrating the equations in partial derivatives (3).

Finally, we note that, though the vortex self-balanced stresses identically satisfy the equilibrium equations
and boundary conditions in the absence of external loads, they play an important role in elastoplastic deformation
of materials. The reason is that the evolution of the dislocation field in a material occurs under the action of the
total stresses σ̃ij , which include the self-balanced stresses generated by dislocations.

This work was partly supported by the Ministry of Education of the Russian Federation (Grant No. E 02-
4.0-224).
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